The five reddening laws presently implemented in hyperz are:
where
and
are the observed and the intrinsic fluxes, respectively. The extinction
at a wavelength
is related to the colour excess
and to the reddening curve
by
with
except for the Small Magellanic Cloud (
)
and Calzetti's law (
).
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
with
in
.
The two laws, for the MW and the LMC, are different in the coefficient
values:
whereas
for
in any case. Because the validity of these laws is limited to
,
i.e.
Å,
we extrapolated the slope at shorter wavelengths from the 1100 - 1200Å
range. At wavelengths longer than 3650 and 3330Å respectively for
the two quoted laws, we adopt the points from Allen, to avoid
being too flat in the red and near-IR regions.
0.15cm
The most used attenuation curve in high-redshift studies is the law derived by Calzetti et al. (2000). They derived a law as a purely empirical result from a sample of near starburst (SB) galaxies. Again, the most prominent feature of the MW law is absent: this characteristic suggests that starburst galaxies contain SMC-like dust grains, being the 2175Å bump an excellent probe of the type of dust in a galaxy. From Calzetti et al. (2000) we have:
with .
Below the validity wavelength range, we obtain the slope of the reddening
law by interpolating
at 1100 and 1200Å. In a similar way, we compute the slope at
Å
from the values at 21900 and 22000Å.
In particular, the application of this law is suggested for the central
star-forming regions of galaxies, and then for high-z galaxies. For this
reason, Calzetti's law is used to correct the value of the SFR at high-redshift,
as seen in the previous chapter. It is evident from Figure 4
that the UV region of the spectrum will be more affected by dust. As a
consequence, taking extinction into account is of paramount importance
for galaxies at ,
when the rest frame UV emission is shifted to optical wavelengths.
Similarly, but in the opposite way, an extinction curve and a value
of the colour excess can be used to deredden the magnitudes of objects
seen through the dust of the Milky Way. see next section with parameters
description